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INSTABILITY OF SLENDER THIN-WALLED BOOMS DUE TO
THERMALLY INDUCED BENDING MOMENTS
By Vernon K. Merrick

Ames Research Center

SUMMARY

A linearized dynamic stability analysis of slender booms illuminated by
thermal radiation is developed. It is assumed that the booms have thin-
walled, circular cross sections. In addition the cross sections are assumed
to be thermally (but not necessarily structurally) seamless and thermal
torques about the boom axis are assumed to be negligible. The analysis is
therefore concerned with the influence of thermal bending moments on boom
stability.

It is shown that in the absence of structural damping, any initially
straight boom, with either a seamless or structurally open cross section, is
unstable. Booms with an initial curvature may exhibit either oscillatory or
nonoscillatory instabilities, depending on the magnitude and direction of the
initial curvature. The worst case oscillatory instability has a frequency
66 percent of that of the natural flexural frequency and diverges as if it had
a damping factor of -0.354. The instability can be suppressed by flexural
damping but, in general, the amount required is greater than can be provided
by the structure of existing boom types. Torsional damping is relatively
ineffective and there exists a class of booms which cannot be stabilized by
torsional damping.

Initial boom curvature can have a significant effect. If the initial
curvature is such that the boom, in the equilibrium state, is bent toward the
radiation source, it is stable; otherwise it is unstable. In general, the
stability of a boom is only slightly influenced by whether or not the boom
cross section is restrained from warping at the tip.

A damper, in the form of a closed vessel, rigidly attached to the boom
tip and containing a ball free to move through a viscous fluid is an effective
stabilizer for a large class of booms important in space applications.

INTRODUCTION

Consider an idealized situation in which a slender, thin-walled boom,
clamped rigidly at one end, is placed in a force-free environment. Suppose
this boom is suddenly illuminated by uniform planar radiation such as, for
example, solar radiation. Some of the radiant energy will be absorbed by the
boom and will set up internal thermal gradients. These, in turn, will produce



internal stresses causing the boom to bend and twist. In the process of bend-
ing and twisting, elements of the boom will change their orientation relative
to the direction of the incident radiation. Thus, the thermal stresses and,
therefore, the effective thermally induced bending moments and torques will
change as the boom deforms. In concept, at least, the boom will ultimately
adopt some static equilibrium shape. The calculation of static equilibrium
shapes for booms of open cross section is treated thoroughly in reference 1.
However, neither static nor dynamic stability of the boom is considered. There
is, therefore, no guarantee that all or even any of these static equilibrium
shapes will occur in practice.

The first indication that all static equilibrium shapes are not stable
was both sudden and dramatic. The OGO IV satellite which has a 60-foot-long
boom of open cross section began to exhibit high frequency attitude oscilla-
tions whenever it was exposed to sunlight. It was found by the Stabilization
and Control Branch at Goddard Space Flight Center that this behavior could be
explained if it was assumed that the boom was oscillating at its fundamental
bending frequency with an amplitude at the tip of about 14 feet. This infor-
mation became available at a time when many gravity stabilized satellites were
exhibiting apparently random anomalous attitude behavior. Since long booms of
open cross section are common features of these satellites, it was conjectured
that boom instability could be the source of the difficulties. High frequency
oscillations recently observed in the magnetometer readings of one of these
satellites tend to support this conjecture. The final evidence supporting the
possibility of boom instability was provided by the Structural Dynamics Branch
at Ames Research Center where thermal oscillations were produced in a rela-
tively short boom. This demonstration provided incontrovertible proof of the
possibility of thermally induced dynamic instability in booms of open cross
section.

In retrospect, a hint that the stability of booms may be a significant
question is given in reference 1, which points out, clearly, that the bending
and twisting modes are coupled. The existence of coupled structural modes
together with bending moments and torques that are functions of structural
deformation are classical elements in the production of instabilities.
Numerous examples can be found in the field of aeroelasticity.

There are several approaches to the theoretical study of thermally induced
boom instabilities. An extension of the comprehensive approach of reference 1
to include dynamic effects should produce details of the actual boom motions
that will be encountered. An important contribution along these lines has been
given by Frisch in reference 2. However, with this type of approach it is
often difficult to assess the relative importance of the various boom system
parameters. Therefore, in addition to a precise analysis, there is a need for
a more traditional engineering approach in which the model of the phenomenon
is drastically simplified to the point where only the most important factors
are retained. With such a theory there is hope of obtaining insight into the
basic causes of boom instability and into possible means of preventing it.
Analysis of possible thermal instability mechanisms have already been made by
Yu (ref. 3} and Beam (ref. 4). The mechanisms in both cases were relatively
simple although they differed widely in concept. Yu analyzed a situation in
which changes in thermal bending moments, due solely to boom flexure, provide
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the mechanism for converting heat energy to mechanical energy. The type of
boom cross section in this case is not important. One result of this theory
is that the greatest instabilities occur when the axis of the boom lies along
the direction of the radiation. In contrast, Beam presents an analysis, sup-
ported by experiment, of the influence of thermal torques on stability. An
essential feature of the type of boom treated is that it has an open nonover-
lapping cross section. The greatest influence of thermal torques must, of
course, occur when the boom axis is perpendicular to the direction of radia-
tion. Beam discovered that booms could exhibit both instability and improved
damping, depending on the orientation of the boom split relative to the
direction of radiation.

The purpose of this report is to analyze yet another mechanism for the
production of thermal instability. Consider a boom which, in its unheated
state, has its axis normal to the direction of radiation. The static equilib-
rium shape will generally be such that the boom is bent away from the radia-
tion source. A bent boom has the well-known structural property of coupled
flexure and torsion. Thus a force applied to the end of the boom in a direc-
tion perpendicular to the plane containing the boom axis will produce not only
bending but also twisting. This effect is particularly marked for a boom of
low torsional rigidity. The boom twist produced by the force causes thermal
bending moments that tend to restore the plane of bending back to its original
direction. The analysis presented here seeks to determine how boom stability
is influenced by bending moments due to twist. It is clear that the basic
physical mechanism described above has many similarities to that underlying
the in-flight dynamic behavior of an airplane wing. Once this analogy is
recognized it becomes easier to understand how a thermally bent boom can
exhibit instabilities. Since in a practical boom system employing an open
cross section thermal torques and thermal bending moments due to twist must
coexist, the analysis of this report may be regarded as complementary to that
of Beam in that any general theory of boom stability must contain essential
elements from both theories.

The analytical approach adopted here is based on the linearized analysis
of what is probably the simplest conceivable boom system. One major simplify-
ing characteristic of this system is derived from the assumption that the
cross section provides a continuous conduction heat path. The cross section
is therefore thermally seamless (although not necessarily structurally seam-
less), which greatly simplifies the calculation of the thermal bending
moments. A second major simplifying characteristic is derived from the
assumption that the effective mass of the boom may be considered to be located
at the free end. This assumption ensures the existence of a single mode of
bending and a single mode of twist. A third major simplification is that
thermal torques are negligible. This assumption is strictly true only if the
cross section is structurally seamless. This boom system is not particularly
representative of the open overlapped cross section booms used in space
applications. On the other hand, the behavior of the idealized boom system
can provide basic information relevant to an understanding of the observed
behavior of actual boom systems. In particular, the analysis provides an
immediate answer to the basic question of whether or not thermal bending
moment instabilities are possible with a boom having a structurally seamless
cross section.



The analysis is extended beyond that which would be required to analyze
the stability of a simple, initially straight boom. The influence of small
amounts of initial boom curvature (such as might be introduced during manu-
facture) is investigated, along with the possibility or providing stability by
means of a simple, passive, ball damper located at the tip of the boom.

DERIVATION OF THE STABILITY POLYNOMIAL

Four steps are required to develop the stability polynomial. The first
step is to describe geometrically the static equilibrium shape of the boom in
terms of its assumed initial, unheated shape and the bending due to thermal
radiation. This static equilibrium shape is described in terms of a radius of
curvature and the angle between the final plane of bending and some fixed ref-
erence. These variables appear in the stability polynomial., The second step
is to establish a relationship between the thermal bending moments and the
angle of twist of the boom. The details of this step are given in appendix A.
The third step is to determine the structural properties of the boom. These
take the form of load-deflection relationships. The loads are assumed to be
forces acting at the boom tip in a direction normal to the boom axis, a torque
acting along the boom axis at the tip, and an arbitrary distribution of bend-
ing moments along the boom axis. The appropriate equations are developed in
appendix B. The final step is to identify the loads acting on the boom in

terms of force of inertia of the tip
mass and the thermal bending moments.
Four linear differential equations
result whose characteristic polynomial
<% defines the stability of the boom
N Plane parallel to system.
¥4 2 plane
Principal Assumptions
Initially
bent boom
(nothermal The boom system to be analyzed and

- deflection)

the primary coordinate reference system
is shown in figure 1. A precise

xo ¥ definition of this coordinate system is
given in the Nomenclature.

The following principal assump-
tions are made about the characteristics
of the boom.

Boom in
thermal equilibrium

1. In the absence of any radia-
tion the centroidal axis of the boom
has a constant radius of curvature R,
along the length of the boom. Further-
more, the curvature vector at any point
on the boom axis lies in a plane whose
Figure l.- Boom system (primary coordinates and normal makes an angle & to the yo'

geometry of deformation). axis (see fig. 1).

Y%

View along negative xp axis




2. The initial radius of curvature R, and the thermally induced
radius of curvature Rg are both large compared with the boom length L.

3. The boom cross section is circular, thin-walled, thermally seamless,
and constant along the length. In addition, the principal second moments of
area are equal.

4. Warping of the boom cross section is restrained at the root.

5. The entire mass of the boom system is located at the free end. 1In
practice this means that the tip mass of the boom is large compared with the
mass of the boom itself.

6. Boom bending does not substantially change the orientation of the
boom relative to the direction of radiation and, therefore, has no influence
on thermal bending moments. This assumption places some restrictions on the
magnitude of the angle 8 between the 1y ! axis and the direction of the
radiation.

7. The centroidal and shear axes of the boom coincide.
8. Thermal torques are negligible.

Several other special assumptions of a less fundamental nature are
introduced and defined as they are required in the .analysis.

Geometry of the Equilibrium State

The static equilibrium shape of the boom results from the combined
effects of its initial shape and a thermally induced bending moment. It
follows from equations (A29) that the thermally induced bending moment is con-
stant along the boom axis and acts about the =z ' axis. Simple bending
theory shows that the thermally induced equilibrium radius of curvature R¢
is constant along the length and the corresponding contribution to the total
curvature vector lies in the x,'y,' plane. It follows that, to a first
approximation, the static equilibrium shape resulting from the combined
effects of initial and thermally induced curvatures is planar. This is
because for all points along the boom the triangles OPQ, shown in figure 1,
are similar. In fact, at any point x along the boom OP = x2/2R0,

PQ = x2/2RS, 0Q = x?/2R, where R is the radius of curvature of the static
equilibrium shape, and R, is the radius of curvature of the initial shape.
The geometry shown in figure 1 then yields the following expressions from
which the radius of curvature R and the angle o between the normal to the
plane of the boom and the y,' axis may be obtained.

1 - 1 + 1 . 2 sin § (1)

R2 R,2 Rg?  RoBs




sin o 1 sin §
R "R 'R ()
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Thermal Bending Moments and Boom Deflection Equations

Suppose now that the boom system is deflected from its equilibrium by
forces Fy(t) and F,(t) and a torque T(t) (see fig. 2). By assumption (6)
the translational deflections y and z
cause no changes in the thermal bending
moments. On the other hand it is shown
in appendix A that a twist deflection
does produce changes in the thermal
bending moments. It is shown in appen-
dix A that for small angles of twist,
the equilibrium thermal bending moment
Mzn(m) remains constant in magnitude.

However, if it is assumed that the
direction of the MZ”(w) moment rotates

with the cross section, then an addi-
tional thermal bending moment

AM_, (x,t) whose magnitude is given by
equation (A37) acts in the direction of
the y' axis. Thus,

dAMyv(X,t)
-—T—+ A AMyl (x,t) = XMZ”(U")\U(X,t)
Figure 2.- Boom system (forces and torques). (3)
and from equations (A29) and (AlS)
JsagecErr? cos B
Mzu( ) - ZQC)\ - (4)
4OETO3 K
A= hpc * pcr2 (5)

where B is the angle between the direction of radiation and the negative
Yo' axis (see fig. 1). (Note: since thermal bending moments are associated
only with the first thermal mode, the subscript may be deleted from X;.)

Equation (3) may be written in the following form

dn(x,t)

ot s an0t) = e (6)
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where
AMy.(X,t)

n(x,t) = _M;;F;T"" (7)

Since Mzn(m) remains constant in magnitude and its direction rotates with the
cross section, it follows that its entire effect is equivalent to a permanent
bend in the boom. The radius of curvature of the bend, as given by the
Bernoulli-Euler bending theory, is

M, ()
1 Z”
R, - T ET (&)

With Mzn(w) replaced by this permanent bend, the only thermal bending moment
acting on the boom is AM ,(x,t). Since by assumption (8) thermal torques are

assumed to be negligible, the load system acting on the boom is as shown in
figure 2. The deflections of the boom may be obtained directly from the
results of appendix B. It follows from figure 2 that

—AMy,(x,t)cos o = - gl-n(x,t)cos o
s

AMb(x,t)

(9)
AMp (x,t)

il

MM, (x,t)sin o = SX n(x,t)sin o
y Rg

Incorporating the above relationships into equations (B34), (B35), and (B22)
gives the following expressions for y(L,t), z(L,t), and y(L,t):

F,(t 5
B 3 L _ N(L,t)cos a
YL, = T (10 - 1) 5 (10)

z(L,t) = F_(t) {L3 . Lo [f3(kL) 1 ]: . T(t)L3 [fl(kL) 1]__§jL,t)sin o

SEI ~ sp2 [ 4C 3ET 3R 2C ET R,
(11

FZ (L3 e (kL 1 T(t)Lf, (KL :
b(L,t) = o [ 1§C ) _ ET] . L) Cz(k ), N(L,§%51n o (12)

S

where
L L - x
N(L,t) = Rf n(x,t)sin( R )dx (13)
0



] o and graphs of the functions f; (kL),
2 f5(kL), and f3(kL) are given in
fa (kL) figure 3.

Tip warping: . . . .
oL Tpwarping: — i . Equation (6) is now multlpllgd by
3 Unrestrained (TWU) 2 R sin[{L - x)/R] and integrated with
< 8 respect to x over the interval
T el 0 < x < L. The result is
4k L
ANCLLE) L aNcn,t) = AR | vk, £)sin(2X)dx
2F dt 0 R
0 (14)
Figure 3.- Variation of £;(kL), fj(kL), f3(kL), It has been shown in appendix C
and £y (kL). that over any interval of time starting

at zero the maximum angle of twist due to thermal bending moments alone is
less than the maximum total angle of twist multiplied by (XZ/ZRRS)sin o.
Since, by assumption (2), (x2/2RRS) << 1, it follows that angle of twist due
to thermal bending moments may be neglected without much loss of accuracy.
Thus the last term of equation (12) may be deleted along with the last term of
equation (B21). This simplification of equation (B21) permits the integral
expression in equation (14) to be evaluated explicitly. Thus, the integral
can be written in the form

L L
. L - x _ . L - x\
R‘/; P(x,t)sin ( R >dx = R](; [wT(x,t) + wB(x,t)]51n ( R ) dx (15)

where ¢.(x,t) and yp(x,t) are defined in appendix B. Therefore by
equations (B31) and (B32), equation (15) becomes

L - F Lof, (kL 3 L _
R f w(x’t)Si“Gfﬁ) dx = Z(t;ORC3( L T(t)gcfl (L), Rf wB(x,t)sin<———LRx> dx
0

0
(16)
Substituting for wB(x,t) from equation (B21) into equation (16) gives the
following final form of equation (14)
5
dN(L,t) _AFZ (LY reokn) 1 AT (£)L3£; (kL)
it NG = —ay 2¢ " 3ET] " 6C (17

Equations (10), (11), (12), and (17) are the final complete set of boom
deflection equations.
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The Characteristic Stability Polynomial
If the boom system has no external forces acting on it, the forces F_(t),

F,(t) and torque T(t) are due entirely to mass-accelerations and internaly
structural damping and may be represented as follows:

d?%y(L,t) _  dy(L,t)

Fy(0) = -mp =7 = Dy — g (18)
_ d?z(L,t) dz(L,t)
FZ(t) = —mT dt—z‘ - DZ —dt—— (19)
, d?y(L,t) dy(L,t)
T = -1y =z " P —at (20)
where
mp tip mass
IW tip inertia about the boom axis
DY’DZ’Dw effective structural damping for translation along b(L) and n(L)

and rotation about t(L), respectively

Equations (10), (11}, (12}, (17), (18), (19), and (20) form the complete set
of linearized dynamical equations from which F (t), F,(t), and T(t) may be
eliminated to yield four equations in the variables y(L,t), z(L,t), v(L,t),
and N(L,t). These equations describe the motion of the boom system under the
sole influence of the thermoelastic effects due to thermal radiation. The
characteristic polynomial is given below in determinant form where the symbol
"s'" is used to denote the Laplace transform variable. The columns of the
determinant correspond to the variables y(L,t), z(L,t), ¢v(L,t), and N(L,t),
respectively. The first two rows correspond to the y and z translational
equations of motion of the tip, the third row to the rotational equation of
motion of the tip about the boom axis and the fourth row to the dynamic rela-
tionship between thermal bending moments and angle of twist.

(mT52+Dys)(1-IS‘% %;_+1 0 0 c%z_ai
0 (mps2 + Dzs) '_,“,é—“ 15“%5 [faglél“) - 31151],* 1 (I,s°+ Df)[%— EII—] %}3{ Sikz—a
° (s + Dzs)[flé%él" E%] 5 (1ys? « pys) Ef2{llles 0
° (mys® + Dzs)[fié%kl" EET] %%% (1452 + Dys) Eiféékkll s s
(21)



One solution of equation (21) is

» 2 L3
(st + D S)( SRZ) 3ET +1 =0 (22)
This is a damped mode of oscillation for any positive values of D,,. It

cannot exhibit instability and is therefore not considered further. The
stability of the remaining modes of motion is given by the remaining solutions
of equation (21):

L3 LS [fy(kL) 1 2 £i(kL) 1 ] L3 sin a
(mys? + D 5){3EI SRZ [ ac 3ET)| ! (ys™+Dys) [ = - BT 3% R,
, .
(nps? + D S)[fLU\L) B ElTJ L (1ys? + Dys) _—Lf2ék” v 1 0 =0 (23)
5 £4(kL) 1 7L 2 L3F; (kL) A
(st + D s)[ - 387 | 1R (st + DWS) e s + X

ANALYSIS OF THE STABILITY POLYNOMIAL

In this section the stability polynomial, given by equation (23), is
analyzed to obtain the maximum degree of instability and conditions for sta-
bility. Two types of boom cross section are considered. The first is the
structurally seamless cross section which has the important characteristic
that the torsional and flexural rigidities are of the same order of magnitude.
The ratio of the two is given by the expression

C 1
ET "1 + v (24)

where v 1is Poisson's ratio. For most materials Poisson's ratio is close to
1/3 and, when specific numerical results are given, this is the value that
will be assumed. The second cross section considered is the open overlapped
type used in most space applications. The important structural characteristic
of this cross section is that the torsional stiffness is much smaller than the
bending stiffness. This may be expressed in the form

C

T << 1 (25)

System Stability in the Absence of Structural Damping

When Dy = D = 0, equation (23) can be written in the form

10



Y
mps 2D I,s2F + 1 0 =0 (26)
2 2
mps BX st GA s + A
where
3 5
AL L f3(kL) 1
ASZET Y pe [ ac 3ET (27)
5 .
A [f3kl) 1 L° sin o
B2 [ 2C 3ET| I1ORR, (28)
A [£1(kL) L]ﬁ
D < [ 2C EI] 3R (29)
F o %—fz(kL) (30)
3 .
G A L jjéﬁi&Sln o (31)
Equation (26), in its expanded form, is
SSmTIw(AF - D?2) + s“mTwa[D(G - D) + F(A - B)]
+ s3I(mpA + IyF) + szx[mT(A - B) + pr] +s+x1=0 (32)

It is shown in reference 5 that any fifth-order polynomial

ags® + ais” + azs3 + a3zs? + ays + ag = 0

has stable roots if and only if all the coefficients are the same sign and the
following two inequalities are also satisfied simultaneously

ajap - agaz > 0
(33)
(a,a, - agaz) (aza, - a,as) - (ajay - agasg)? > 0

It follows from equation (32) that

11
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azay - apas = -mpBA
Therefore when B > O
azay - azag < 0 {(34)

However, if condition (34) holds then conditions (33) cannot hold simulta-
neously. Therefore the system is unstable. In particular, for initially
straight booms of either seamless or open cross section B > 0. These
initially straight booms are therefore always unstable in the absence of
structural damping.

Conditions Under Which Iw May Be Neglected

Consider the case of a boom not under the influence of thermal radiation
but still bent into a circular arc of radius R. The coupled flexural-
torsional dynamical behavior of this boom would be described by the transla-
tional equation of motion in the =z direction and the rotational equation of
motion about the boom axis. Since heating is absent, the variable N and the
thermal bending moment equation need not be included. The frequencies of the
natural undamped modes of vibration (Dz = Dy = 0) are therefore given by the
first two rows and columns of the determinant in equation (26);

m.As? + 1 I,Ds?2
T v =0 (35)
mTDs2 IwFs2 + 1
Equation (35) may be expanded into the form
mpl, (AF - D2)s" + (I,F + mpA)sZ + 1 = 0 (36)

If I, 1is to have an insignificant effect on the frequency of the mode
associated with mT and which, in an unbent boom, would be the flexural mode,
the polynomial must be an approx1mate factor of equatlon (35). 1It
can be shown, by glVldlng equation (36) by mTAs + 1, that this is true if

and only if
I 2
l (P.) << 1
mT A

A good working rule, therefore, might be that IW has very little influence
on the flexural frequency if

2

Iy < T*g (%) (37)

12



If »o is the radius of gyration of the tip mass about the axis of the boom,
then inequality (37) can be written in the form

by < /1_0 [%‘ (38)

It will be demonstrated, in the sequel, that the influence of thermal radia-
tion is to produce an unstable mode with a frequency close tc that given by

mTAs2 + 1 =0. It is also clear that reasonable amounts of structural damping

will not have a great influence on the frequency of this unstable mode. There-
fore inequality (38), which indicates when I does not influence the natural
structural mode of frequency Vl/mTA, should also give a rough indication of

when I does not influence the thermally induced instability of a boom
possessing some structural damping.

For a boom with a structurally seamless cross section k = «, so that
fy (kL) = f, (kL) = f3(kL) = 1, and the expressions for A and D given by
equations (27) and (29) become (with v = 1/3)

L3
A= 3ET
L3
= - 5REI
Inequality (38) then becomes
3R
p, = * R (39)
YT /10

Most booms have a value of R greater than 100 m so that it is clear from
inequality (39) that, for most practical boom systems employing structurally
seamless cross sections, the tip inertia I, will have a negligible effect on
boom dynamics. v

For a boom with an open cross section, A and D become

L3 Lof3 (kL)

A= ZET * ~Z0R%C
b = L1 (kL)
BRC

Inequality (38) then becomes

13



L3 Lof5 (kL)

+
1 3ET 2
/10 L3f, (kL)
6RC

The requirements on p_, given by inequality (40) are most stringent when

C ~ 0. Also the ratio f3(kL)/f;(kL) is close to unity for most booms. Thus
Iy cannot influence the dynamics of booms with open cross section (C/EI << 1)

if

(41)

L2
10/10 R 10R

It can be seen by comparing inequalities (39) and (41) that the limiting value
of o for a boom with an open cross section is much less than that for a
boom with a seamless cross section. In fact, the ratio of the two is
(1/10)(L/R)2. Even though the limiting value of op indicated by inequal-
ity (41) can be quite low, it has never been exceeded in boom systems used for
space applications. Consequently, for the remainder of the analytical treat-
ment given in this report it is assumed that Iy = 0. It is conceivable,
however, that future boom systems may employ tip masses with rotational
inertias large enough to influence the boom dynamics. In these cases the
complete polynomial, given by equation (23), must be used in evaluating the
stability.

The Influence of Flexural Damping D,
Some of the implications of equation (23) can be best understood by a

study of the system with no rotational inertia or rotational damping. With
Ly = Dy = 0 equation (23) reduces to

mpAsS + [D,A + mpA(A - B)]s2 + [1 + D,A(A-B)]s + =0 (42)

For a seamless cross section, equation (24) and L2/R% << 1, permit equa-
tions (27) and (28) to be simplified:

L3
A= ET (43)
5 -
B = (1 + 3V)L° sin a £3(kL) = 1 (44)

60ETRR

For a split cross section using inequality (25), the corresponding
expressions are

14
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_ L3 LAfa(kL)

= 3ET * S0cR2 (45)

_ L°f3(kL)sin a
~ 7 20CRRg

(46)

From the points of view of both analysis and presentation of computational
results, a more convenient form of equation (42) is obtained by expressing it
in terms of the following set of dimensionless parameters:

A% D Avmp(A - B) (47)
s* b s/mi(A - B) (48)
g, 8 2%;. /m(A - B) (49)
X A % (50)

It should be noted that ¢ is the flexural damping factor based on a circu-
lar frequency vmp(A - B). Normally the flexural damping factor z,' 1is

based on the natural undamped circular frequency in flexure vmpL3/3EI. The
conversion from one to the other is therefore

-
z,' = ¢
z zv/ 3EI(A - B)

The dimensionless form of equation (42) corresponding to the dimensionless
parameters defined above is

S* ZCZ * *2 * * *
T-x T\t —x+ s + (1 + 2x*g,)s* + A* = 0 (51)

It is shown in reference 5 that any cubic equation

3 2

ags” + ays® + ags + az =0

has stable roots if and only if all the coefficients have the same sign and
aiap > agas (52)

Inequality (52) written in terms of the coefficients of equation (51) becomes

15



z 2 X
0,2+ mr L+ 2 (1 -X] -7>0 (53)

If no structural damping is present (¢, = 0) the stability criteria can be
satisfied if and only if X < 0. It follows from the definition of X that
this condition is equivalent to sina <0 or O > a > -w. Therefore stabil-
ity or instability will prevail according to whether or not the boom, in
static equilibrium, and the radiation source are both on the same side of a
plane passing through the boom root perpendicular to the direction of radia-
tion. This condition for stability may be interpreted in terms of a relation-
ship between the direction and magnitude of the initial curvature and the
thermally induced curvature. Thus, from equation (2), if (sin &/Rg) <-(1/Rg)
the boom will be stable and if (sin §/Ry) > -(1/Rg) the boom will be unstable.
In particular, if the boom is initially straight, then (1/Ry) = 0, and it is
always unstable. The instability can occur in two forms, depending on the
value of X. This can be seen more clearly if equation (51), with ¢, = 0, is
expressed in the standard root locus form

*2
1+ DL -x] —8& 21y

s*(s*2 + 1 - X)

in which Xx*(1 - X) is the gain factor.

The root locus for 0 < X < 1 differs from that for 1 < X < = as can
be seen from figure 4. Thus when 0 < X < 1 the instability is always an

imaginary Imaginary oscillatory divergence; whereas when
- - 1 < X < » the instability may be a pure
divergence of the type associated with
static instability.
| Real T R It follows from equations (43) and
(44) that the value of X for a boom
with a seamless cross section can never
exceed [(1 + 3v)L? sin o]/20RRg, which
(@) 0 < X <1 () 1 <X <o is small compared with unity. For such
a boom, therefore, any instability must
Figure 4.- Root Loci for X > 0. always be of the oscillatory or flutter

type. This same statement, however,
cannot be made for booms of open cross section. In this case it follows from
equations (45) and (46) that

3 EI L2f3(kL)sin o

X:.@_L,RB:S,;,>_, (54)
| + 3 EIL?£3(kL)
20 CR2

If 1/R? and sin a/R, given by equations (1) and (2), respectively, are sub-
stituted into equation (54), there results an expression for X in terms of

16
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Ro and 8. The maximum value of X with respect to Ry and § 1is given by

x o L //%E1L2f3(kL)
" 2R, 20C

This maximum occurs when & = -n/2 and

1 1 / 20C
R, ~ Rg 3EIL2f3 (kL)

Clearly, therefore, as EI/C » =, X > =, However, from equation (54), if the
values of Ry and § satisfy the inequality

1 (sin 8 *__1_> . -20C
Ry Rg Ro/ ™ 3EIL2f4 (kL)

then X < 1. This condition on Ry and § 1is not too stringent and, in
particular, holds for initially straight booms. It is anticipated that most
practical boom systems will satisfy the above condition on R, and §, which is
therefore assumed to hold throughout the remainder of this report. The report
is therefore concerned only with the oscillatory instabilities associated with
values of X 1in the interval 0 < X < 1.

It is of interest to know the greatest degree of instability that can
occur, as measured by magnitude of the real part of the divergent roots of
equation (51). The answer to this question depends on which of the two vari-
ables X*, X 1s maintained constant. Both cases, namely, variable X* at a
fixed X and variable X at a fixed A* are treated in appendix D. When
£, = 0 and X 1is constant, the real part of the divergent root has a maximum
value given by

X
p* = 1 (55)

and this occurs at a value of X* given by

2 - X

Mrza-x

(56)

with the corresponding imaginary part of the root given by

/ X X2
q* = 1—-2——T5 (57)
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These results may be expressed in dimensional form and simplified for the case
of a boom with a seamless cross section by substituting for A and B from
equations (43) and (44) and using the condition that X << 1. The results, in
dimensional form (see notation for definition of p* and q*), are

_LZ(1 + 3v)sin a 3EI
P =~ B0RRg / a3 (58)

3EI
A= x 59
q / mTL3 (59)

Equations (58) and (59) show that since L% sin a/RRg << 1 the frequency of
the divergent mode is approximately equal to the frequency of the flexural
mode of a straight boom. The instability will therefore appear to an observer
as if the boom were oscillating in both bending and torsion at its natural
bending frequency, and diverging as if it had a damping factor equal to

[-L2(1 + 3v)sin a]/80RRs. If 1/Ry > 1/R. this quantity has a lower bound of
[-(1 + 3v)/40](L?/Rg?). With v = 1/3 and L/Rg = 0.1 this lower bound has a
value of -0.0005. This is clearly a mild divergence. The basic reason why
booms with seamless cross section can exhibit only a mild divergence is that,
because the torsional and bending stiffnesses are of the same order of magni-
tude, X = B/A is always small. This is not the case when the torsional
stiffness is low compared with the bending stiffness, as for a boom of open
cross section. Thus, for example, equation (54) shows that, for an initially
straight boom (1/Ryp = 0), X + 1 as EI/C » o,

When ¢, = 0, it follows from the results of appendix D that, for a
fixed value of A*, the maximum value of the real part of the divergent root

is (eq. (D29))

k. - >\*
PY S Ty (60)

and this occurs at a value of X given by (eq. (D30))

A% A
XK=1l-4a= Y (L + 2A%) (61)

with the corresponding imaginary part of the root given by (eq. (D32) using
eqs. (60) and (D28))

K (4 + Ta%)

4(1 + 2x%)2 (62)

q* =

18




28 Graphs of equations (60), (61), and (62)
are given in figure 5.
.24
20 It follows from equations (60),
. . (61), and (62) that p* attains its
e 16 : maximum value when A* - ., In the
E 2 limit
5 .12 %
= g 1
08 s lim p* = T (63)
& A% oo
.04 E
o * lim X = 1 (64)
. A*>
Figure 5.- Variation of maximum real part of . 7
unstable root (p*) with X*, lim q* = 16 (65)
AFr oo
For the case of an initially straight boom (1/R, = 0) the corresponding
limiting dimensional values of the unstable roots are
1 3EI
P =7/ mL3 (66)
7 3EI
= /16 / ml3 (67)
T
It follows from equations (66) and (67) that
V2
P =7 p? + q? (68)
.28 "1 i 1 v vty 1 1 117 T where /bz + q2 is the circular fre-
quency of the unstable oscillation. To

Figure 6.- Variation of real part of unstable

root (p*), with for various values

of X.

A,

s

an observer, therefore, a boom for which
X > 1 and A* > » will appear to oscil-
late in both bending and torsion with a
frequency that is about 66 percent of the
natural bending frequency of a straight
boom. It will also appear to be diverg-
ing as if it had a damping factor equal
to -v2/4 or -0.354. This is clearly a
rapid divergence. Furthermore, it
remains severe down to quite a small
value of X*. For example, it is shown
in figure 5 that if X* > 2, then

p* > 0.2. To complete the survey of the
instabilities shown by equation (51) the
variation of p* with A* for various
values of X is shown in figure 6. This
graph shows the two types of maxima for
p* which have been discussed.
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It is important to note here that the effect of boom tip condition on
stability is dictated by the function f3(kL) (see eq. (54)). It follows from
figure 3 that, for values of kL greater than about 2, the stability of a
boom is independent of whether or not the tip is restrained from warping.

For a fixed value of X the amount of flexural damping ¢, required to
stabilize the boom for all values of A* may be determined by setting p* =0
in equation (D16). The result is

1 1
Lz = 5 - 7-V1 - X (69)
and occurs at the following value of A* obtained by substituting equa-
tion (69) into equation (D17),

1
PR (70)
/1 - X

with the corresponding imaginary part of the root given by

q** = /1 - X (71)

Alternatively, equations (69) and (70) may be obtained by differentiating
equation (53) with respect to A* and setting 3z,/3A* = 0.

For a boom with a seamless cross section equations (69), (70), and (71)
become, using equations (43) and (44),

_L2(1 + 3v)sin o
t2 = SORR, (72)
3EI

These results compared with equations (58) and (59) show that the structural
damping required to counter the boom instability is equal to the magnitude of
the effective negative damping factor corresponding to the maximum instability
when the boom has no structural damping. The value of ¢, given by equa-
tion (72) is very small and will probably be exceeded by the structural damp-
ing present in most practical boom systems employing seamless cross-section
members. It is, therefore, unlikely that instability will ever be observed in
these types of boom.

The maximum structural damping required for stability when A* is
assumed constant occurs when X = 1. This can be shown from equations (D29)
and (D30) of appendix D, from which it also follows that
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Figure 7.- Minimum flexural damping (z,) required required.

21+ /1 o+ 4xx?

t'—’z = 4)1* (74)

for p* = 0. The corresponding value for
the imaginary part of the root is q* = 0.
In other words the oscillation is 'dead
beat." The graph of equation (74) is
plotted in figure 7 along with the varia-
tion of z, with A* for other values of
X. Since for a boom with an open cross
section X can approach unity, it is
clear that large values of ¢, may be

In particular, if A* > 2

then ¢, > 0.4. The asymptotic value of
tz for X =1 1is 0.5. This therefore represents the ¢, which will stabi-
lize a boom with a circular thin-wall cross section irrespective of the mate-
rial it is made from, the initial curvature, or the L/Rg ratio. It is
interesting to note that the ¢, required to stabilize the worst case insta-
bilities is somewhat greater than the negative damping factor of the
instability when g, = 0.

Minimum {, for stability

for stability.

The Influence of Torsional Damping Dw

It has been demonstrated in the last section that it is unlikely that
instabilities of booms with seamless cross sections will ever be observed.
The following treatment, to determine the influence of torsional damping, is
therefore restricted to the more unstable open cross-section boom configura-
tions characterized by EI/C »> 1. Consider the case wherein D, = Iy = 0
and the boom is initially straight (1/Ry = 0). The stability polynomial
(eq. (23)) then reduces to

2 9 - SXofq(kL)] e 1 o 3
9 Cw[ I - X, So *A\TTRg * 2eyto")So

s 0%+ 20))80%7 + (25 00* + Dsgx + A * = 0 (75)
where
DyLf, (kL) T
g = V2 (76)
P 2C mTL3
3 ELLZ oo
« . 20C R .
° % L3 ELLZ o (77
20 C gz 3
N mTL3
Ao = A/ FET (78)
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So* = S/ 3ET (79)
_ £ k1)]2
Fu0cb) = 7, ey £5 (kD)
Note that Xg, Ag*, and s, * are the values of X, A*, and s*, respectively,
for an initially straight boom. The graph of £y, (kL) is given in figure 3.

It is shown in reference 5 that any fourth-order polynomial

3 2

aosL+ + ajsd + aps? + ags + ay = 0

has stable roots if and only if all the coefficients are positive and

as(ajap - apaz) - aza;” > 0 (80)
In this instance this condition reduces to
2_ 3 2
8[9 - 5f, (kL) * Ly’ * 419 - 10f4(kL)]xo*cw
2 Ip*
- [10f, (kL) - 18X, ];w + T—T_Y; <0 (81)
This inequality defines a stability boundary which divides the X, , 2o* space

into two regions. These are characterized by whether or not the stability
condition can be satisfied by a real positive value of ¢ I1f the stability
condition can be satisfied, then the system can be stabilized by torsional
damping; otherwise it cannot. This stability boundary has been calculated for
-y fa(kL) several values of f, (kL) and is shown in
( Note: Boom is inhially straight) figure 8 with the values of Cll) along

. T interval defined by the two positive
Figure 8.- Values of X, and A\,* for which the TOOts. In other words, if the torsional

boom can be stabilized by torsional damping. damping is gradual ly increased, the boom
system will become stable, but a point will be reached when further increase
of torsional damping will result in instability. In the right hand region
there is always a real negative root and a pair of complex conjugate roots.
In this region, therefore, torsional damping will never stabilize the boom
system.
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2 : Icmmmsifézxfd the boundary. The cubic equation in g,
ER "sompng | defining the boundary has two equal real
S sl positive roots and one real negative root.
2 In the left hand region of figure 8 there
g 4 con be are usually two real positive, but
@ | stablized by unequal, roots and one negative real root.
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It follows from figure 8 that boom systems characterized by values of X,
close to unity can only be stabilized by torsional damping for very low values
of Ag* (long thermal time constants). It is clear that, in general, torsional
damping is less effective than flexural damping. In fact, figure 7 shows that
there is no region of the X, A* region which cannot be stabilized by flexural
damping.

ANALYSIS OF THE EFFECTIVENESS OF A
PASSIVE TIP DAMPER

One way to damp the boom system and, therefore, possibly to stabilize it
is to incorporate a damping mechanism in the end mass. A relatively simple
scheme is to make the end mass in the form of a thin closed shell containing a
viscous fluid and a ball. A disturbance of the boom system then causes rela-
tive motion between the spherical shell, attached rigidly to the boom, and the
ball residing inside. The motion of the ball through the fluid then dissipates
the disturbance energy. Since the ball is free to both rotate and translate,
the damping scheme provides both torsional and flexmnral damping. However, it
has been shown that torsional damping is not particularly effective in stabi-
lizing the boom system. Therefore in this analysis it is assumed that the
ball motion is one of translation only and the damping effectively confined to
the flexural mode. The analysis is further simplified by assuming that
Iy = Dy = Dy = 0 (where, it will be recalled, Dy and D, refer to structural
damping only) and the mass of the damper fluid is negligible.

The equations of motion of the damper ball along the y and z axis are

o [dzy(t) . dva©7 . Yalt)
d| dt? dt?2 dt
(82)
a2z (t)  d%zq(t) dzq(t)
md + = K ——
dtZ dtZ dt
where
my mass of the damper ball
yd(t),zd(t) coordinates of the center of mass of the damper ball measured
from center of mass of hollow container
K damping constant (a force of «xv is required to move the

damper ball through the fluid with velocity V)
The boom alone (less damper ball) force equations as given by equations (18)

and (19) must be changed to include the forces exerted by the damper ball.
Thus they become
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Py, Ya®)

Fy(t) = -mg e Tt (83)
2 dz(t)
F,(t) = -mg d ZES) + th (84)

where mg 1is the mass of the damper shell fixed rigidly to the end of the
boom.

Combining equations (82) to (84) with equations (10), (11), (12), and
(17) gives the characteristic polynomial which, like equation (21), has two
factors. As before one of these is damped and need not be considered further.

The other factor is

L3 L% [fykL) 1 sin a L3 LS [fy(kL) 1
2L L2 [f3 1 sin o L L ffykL) 10
Ms3°|3ET T 5R2 [ 4C SEI] 1 0 R, “s|3ET " 5gZ L 4C ET

S TEiki) 1712 o TfikL)y 17 LE

mg s [“?c ET| 3R 1 0 s | T3 BT 3R

=0 (85)
2 [£3(kL) 1 7 L> f3 (kL) 1] L%
Mg [ 2C 3ET | TOR 0 s+ A s | T3¢~ - 3ET] T0R
mgys 0 0 mys +K

If P(s, mg) is the polynomial in s formed from the first three rows
and three columns of the above determinant, then it follows that equation (85)
can be expressed in the form

smgP(s,mg) + «P(s,mg + my) = O (86)
It should be noted that P(s,mg) is identical to the left hand side of equa-
tion (42) when my 1is replaced by mg and D, set equal to zero. Equa-
tion (86) can therefore be written in the form
smy[mgAs 3 A(A - B)s?
dlmsAs® + mgh( }s% + s + A]

+ k[ (mg + md)As3 + (mg + mg)A(A - B)sZ + s + Al =0 (87)

It is convenient at this stage to write this equation in terms of the

dimensionless parameters given by definitions (47), (48), and (50) (where
mp = mg + mg) plus those defined as follows:

m
mg* & E% (88)
K* é K ———MT(A - B (89)

g
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Equation (87) then becomes

S*[—(_ll———mgjl 5*3 + (1 - md*)A*s*z + s* + )\*:I

s*3 2
+ K*(l —x * S*TAF 4 s¥ +°A*> =0 (90)
or
1 - mg* y *® 3
- > * - EAP K *
(1-X>S +[(1 my*)A +1—X]S
b (1 + k*A%)s*7 & (0% + k*)s* 4+ K*A* = 0 (91)

Since by definition 1 - md* >0, 1 - X >0, and «* = 0, the coefficients of
equation (91) are always positive. Therefore the boom system is always stable
provided inequality (80) is satisfied. Substituting the appropriate value of
the coefficients from equation (91) into inequality (80) yields

3
*7y * 2
Kl—i\;(( - k* {md* + A*z[md* - (1 - md*)X]}

2
- K*A*[md*A*z(l-md*)(l— X)+~md*— (1 - md*)X] + (1 - mg*)r* X <0 (92)
provided X # 1

Equation (92) may be used to answer the following question. Given a
fixed value of X and A*, what is minimum value of mg* (subsequently denoted
by mg *) that will permit the boom to be stabilized? This is equivalent to

finding the minimum value of mg* for which a real positive value of «*
exists which satisfies equation (92). Corresponding values of mgq_* and k*

for various values of A* and X have been calculated on a digital computer.
The results are shown in figures 9 and 10. At mg* equal to mg_*

o
o

» @
®

»

Minimum domper mass ratio m'dm for stability
Dimensionless damper constant k for minmum mg*

Values of
.2 2 xand X*for
.98 (ma“")mux
0 c I o ! ol [
il | {e} 100 N | 10 100
A* A"
Figure 9.- Variation of minimum mg* for stability, Figure 10.- Variation of « for minimum my*,
with A*, for various values of X. with A*, for various values of X.
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equation (92) has one real negative root and a pair of equal real positive
roots. For values of mg* below the mdm* shown in figure 9, equatiqn (92)
has one real negative root and a pair of conjugate complex roots. In this
case there is no real positive value of «* that satisfies equation (92) and
therefore the boom cannot be stabilized. It is interesting that for a fixed
value of X, there is a value of A* for which mg,* is a maximum. With
this value of mg*, therefore, a boom with a given value of X can be stabi-
lized irrespective of the material from which it is made. An analytical
determination of the maximum value of mq *, for a given X, along with the
value of A* at which it occurs, is given in appendix E. The results are
summarized below

Qndm*)max = X (93)

s L (94)
1~ X

c* = /T X (95)

It is clear that, provided the value of X associated with a given boom
is not too large, the damping scheme provides a practical solution. However,
booms with open cross sections can have values of X close to unity and unless
the value of XA* 1is either very large or very small the technique may not
offer a practical solution.

STABILITY OF TYPICAL OPEN SECTION BOOMS

The analytical results given in the previous sections show that there is
a class of booms which can exhibit severe instabilities. In order to present
the results in a compact form they are expressed in terms of dimensionless
parameters. This method of presentation makes it difficult to visualize the
physical dimensions and elastic properties of booms likely to experience
instabilities. To provide data points relative to which other booms may be
judged and to provide convincing evidence that existing boom systems can be
unstable, the analytical results will be applied to specific examples. The
pertinent parameters for these examples are given in the table. These naram-
eters are typically those for silver plated copper-beryllium booms with a
structurally open cross section. The thermal radiation constant is appropri-
ate to a situation in which the sunline is normal to the boom axis. Both the
radius of curvature and thermal time constant have been calculated assuming
the boom cross section is thermally seamless (eqs. (4) and (5)). Boom A
represents the OGO IV boom that is thought to have exhibited instability.
Boom B 1is typical of one of the booms of a Naval Research Laboratory (NRL)
gravity stabilized satellite which has experienced anomalous behavior. Boom C
represents one of the booms of the Department of Defense Gravity Experiment
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(DODGE) satellite which was observed by television camera but did not
oscillate. Boom D represents one of the main booms of the ATS-D satellite.

The theory given in this report is based on the assumption that the mass
of the boom is negligible compared with the mass of the tip. This is certainly
not true for boom A. However, if it is assumed that the mode shape has only
a secondary influence on stability then the boom mass can be represented as an
equivalent tip mass. The magnitude of this tip mass is such that it gives the
correct natural frequency of the first bending mode. Thus if the boom has no
true tip mass, as_is the case for boom A, then the natural fundamental fre-
quency is 3.52 VEI/cmLE where op 1is the mass per unit length of the boom.

If Amp is the equivalent tip mass then

mTL3 m
or
Amp = 0.242 oplL (96)
Similar considerations in torsion lead to an equivalent tip rotational inertia
given by
C _ 7 C
N4 2
AIW 2 oL
or

AT, = 0.406 oL (97)

Equation (97) is only an approximation, since the effect of the warping stiff-
ness has been ignored. However, the calculation is used only to demonstrate
that inequality (38) is satisfied (see table) and, therefore, that rotational
inertia effects on stability can be ignored. Equation (97} is sufficiently
accurate for this purpose.

The values of A* and X for each of the example booms are plotted in
figure 6. It is clear that boom A is the most unstable, having a value of
p* = 0.14. Therefore, in the absence of structural damping, boom A has an
unstable oscillation which diverges as if it had a damping factor of -0.14.!
The value of p* for boom D 1is about half that for boom A. However, this
fact does not give a balanced picture of the relative severity of the instabil-
ities of these two booms. Thus, for example, the time to double the amplitude
for boom A 1is only 0.46 minute while for boom D it is 17.20 minutes.

This difference, of course, merely reflects the widely different frequencies
of the two booms. However, it is important to note that in space applications
the orientation of the run relative to the boom axis will generally vary with
time as the satellite moves around its orbit. Therefore the conditions favor-
able to promoting instability in a given boom may occur for only part of the

'When C/EI 1is very small VmT(A - B) * /mpL3/3EI therefore
;Z' B EZ = _p*.
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orbit. It follows that the greater the time to double the amplitude, the less
will be the probability that its amplitude will be severe enough to influence
the satellite or even be detectable. This may be the reason instabilities
were never observed in boom C.

It follows from figure 7 that all the booms can be stabilized by flexural
damping. In each case the required flexural damping factor is slightly higher
than the corresponding value of |p*|. On the other hand the values of A*
for all the booms is considerably higher than 1.0, and it follows from
figure 8 that none of the booms can be stabilized by torsional damping alone.

Although the booms can be stabilized by flexural damping the amount
required for all the example booms is considerably higher than can be provided
by the structure. The ball damper, however, seems to offer a practical solu-
tion to this problem for booms B, C, and D. In particular, boom D could be
stabilized with a ball damper in which the ball is about 30 percent of the
entire tip mass (see fig. 9). In fact a reasonable design approach would seem
to be to assume that the boom has no structural damping and to size a ball
damper to make the boom neutrally stable. The difficult question of deciding
the exact value of the structural damping is thereby avoided.

CONCLUSIONS

A linearized dynamic stability analysis of slender booms, illuminated by
thermal radiation and subject solely to self-induced thermal bending moments,
leads to the following conclusions.

1. In the absence of structural damping any initially straight boom with
either seamless or open cross section is unstable.

2. For most practical boom systems, including all that have been flown,
the rotational inertia about the boom axis has a negligible effect on boom
stability. Subsequent conclusions are all based on this simplification.

3. Initial curvature may increase or decrease the instability depending
on its magnitude and direction. If the equilibrium shape of the boom, repre-
senting the combined effects of initial and thermally induced curvatures, is
such that the boom and radiation source are on the same side of a plane pass-
ing through the boom root and perpendicular to the radiation rays, then the
boom will be stable. In the absence of structural damping the converse is
also true.

4. In the absence of structural damping, booms with a seamless cross
section are only mildly unstable. They would probably be stabilized by their
natural structural damping.

5. In the absence of structural damping, booms with open cross sections,

characterized by a low ratio of torsional to bending stiffness, can be very
unstable, Booms with an initial curvature may exhibit either oscillatory or
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nonoscillatory instabilities depending on the magnitude and direction of the
initial curvature. Initially straight booms, on the other hand, can only
exhibit oscillatory instabilities. The worst case oscillatory instability has
a frequency 66 percent of the natural flexural frequency and diverges as if it
had a damping factor of -0.354. The magnitude of the instability is only
slightly dependent on whether or not the cross section at the free end of the
boom is restrained from warping. These booms can be stabilized by flexural
damping but, in general, the amount required is greater than can be provided
by the structure of existing booms.

6. Torsional damping is far less effective than flexural damping in
suppressing the instability. There exists an important class of booms of open
cross section which cannot be stabilized by torsional damping alone.

7. For a large class of booms, a passive ball type damper, attached to
the tip of the booms seems to offer a practical solution to the problem of
suppressing the instability.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, November 28, 1969
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APPENDIX A

THERMAL BENDING MOMENTS IN A THERMALLY SEAMLESS THIN-WALL BOOM

OF CIRCULAR SECTION HEATED BY THERMAL RADIATION

The primary aim of this appendix is to derive the linearized dynamic
relationship between the thermal bending moment and the longitudinal twist of
the boom.

First the normal modes and time constants of the temperature distribution
are determined for a boom heated by parallel rays of thermal radiation. These
modes are then used to obtain the steady-state temperature distribution around
the boom cross section. Knowledge of the temperature distribution then per-
mits the steady-state bending moments acting along the length of the boom to
be calculated. It is then assumed that the boom is suddenly rotated about its
axis through a small angle. The accompanying variation of temperature dis-
tribution, as expressed by the normal modes and time constants, is then used to
determine the differential equation describing the variation of thermal bend-
ing moment with time. To simplify the analysis, assumptions similar to those
used in reference 1 are made. These are given below for the sake of
completeness.

1. The boom is sufficiently slender that heat conduction along its
length may be neglected.

2. The entire cross section loses heat by radiation.

3. The radiant heat absorbed by an element on the sunlit side of the
boom is proportional to the cosine of the angle between the surface normal at
the element and the sun's rays.

4, Internal radiation is neglected.

The first of the above assumptions permits a reduction in the dimensionality
of the heating problem since it implies that the thermal behavior of any sec-
tion of the boom is independent of the thermal behavior of adjacent sections.
Thus, the entire thermal behavior of the boom can be deduced when the
behavior of a typical longitudinal section of small length is known.

TEMPERATURE DISTRIBUTION

The unsteady heat flow equations defining the temperature distribution
around the circumference at a typical section along the boom and consistent
with the above assumptions is

25 1 T '
3°T(s,t') _ och 3T (s,t")

352 3t = O'ETLF(S,t') - Y(S) (Al)

Kh
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along with boundary conditions representing the fact that for a seamless
circular cross section the temperature and its first derivative are
continuous

T(s,t') = T(s + 2nr,t') (A2)

9s 9s
where
K thermal conductivity
h cylinder thickness
o mass density
c specific heat
o Stephan-Boltzmann constant
€ emissivity
s distance measured along the circumference
t! time
T(s,t") absolute temperature at point s at time t'
T cross-sectional radius
vy (s) input heat flux rate due to thermal radiation

The analysis may be simplified further by making use of the observation that
booms are usually made from materials whose thermal properties cause the tem-
perature difference between any two points on the boom to be small compared
with the absolute temperature of any point on the boom, Thus, if T, 1is some
average temperature and T(s,t') is the difference between the temperature at
the point s at time t' and the average temperature, then the ratio
T(s,t'")/T, 1is usually small. This permits use of the so-called linearizing
assumption in which squares and higher orders of T(s,t')/T, are neglected.

By definition
T(s,t') = T, + T(s,t") (A3)
and substituting for T(s,t') from equation (A3).into equations (Al) and (A2)

and using the linearizing assumption gives the following equations for
T(s,t')
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éﬁzéiizl)- pe AT(s,t7) . 46;503 r(s, 0 = - 1 ;hOETOQ (A4)
T(s,t') = T(s + 2mr,t')
(AS)
dT(s,t') _ 3T(s + 2mr,t')
as as
The homogeneous part of equation (A4) is
éfIégéEL)_ pe pLlst) 402503 T(s,t') = 0 (A6)
A solution to equation (A6) has the form
T(s,t') = e tA(s) (A7)

where A 1is a constant. Substituting for T(s,t') from equation (A7) into
equation (A6) gives the following ordinary differential equation for the

function A(s)

2
dTALS) _ g2a(s) = 0 (A8)
ds
where
3
02 - 4oeT ook (49)
Kh K
The solution of equation (A8) is
As) = C1eM5 + Cpe™™S (A10)

The value of © may now be found from the boundary conditions given by equa-
tions (A5). Substituting for A(s) from equation (Al0) into equation (A7) and
for T(s,t') from equation (A7) into equations (AS5) gives

Qs s Cze—Q(s+2nr) (A11)

Cie” + Cpe” eQ(S+2ﬂr) +

=C1

Qs Qs eQ(s+2ﬂr) _

Cie™® - Cre® = ¢ C e R(s+2mT) (A12)

Equations (All) and (Al12) are satisfied for nontrivial values of C; and C;

if and only if
(1 _ eQZHr) (1 _ e—Qan)

@._ eﬂzﬂr) _(1 _ e—szr) -

32



or

(1 _ eQZﬂr)(l _ e—Qzﬂr) =0 (A13)
Equation (Al13) has a double root eQZﬂr = 1 which, in turn, has roots given
by

Q, = Efrl n=0,1,2,. .. (A14)
where

i=7v-1
The time constants A can now be determined from equation (A9),
40eTo® K /n\2
)\n = —-hpc + ‘—)z (;) (AlS)

and the functions A,(s) from equation (Al0),

An(s) = Cine'™ (/) o ¢y emin(s/T)

which can be rewritten in the form

An(s) = Ain(s) + Agp(s) (Al6)
where

Ain(s) = (Cln + C2n)cos %?

Azn(S) = i(Cln - C2n)sin -nr—s-
The functions Aj;n(s) and Ayn(s), n = 0,1,2,. . . are normal modes of the

temperature distribution.

It now follows that the general solution of the homogeneous equation (A6)
is

oo

Ant!
T(s,t') = E ;e " [Am(s) + An(s)) (A17)

n=0

Equation (Al17) suggests a solution to the inhomogeneous equation (A4) of the
form

o

T(s,t') = E [qln(t')cos %? + q2n(t')sin %;] (A18)

n=0
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where the constants Cjp + Copn and i(Cin - Cop) are included in the
functions q,,(t') and q2n(t'), respectively. Substituting equation (Al8)
into equation (A4) and using equations (A8) and (A9) yields the equation

E” da,, (£1) n dq,, (') | s)-ceTok
[_TTET_—_ +-Anqn(t') cos ?§4- —_EET—__“Fanzn(t') = XL_%BEE_Q_

n=0
(A19)

which must be satisfied by q;,(t') and q,,(t') for equation (A18) to be a

solution.

STEADY-STATE BENDING MOMENTS

Consider now the situation as shown in figure 11(a), where the y'" and z"
axes are assumed to be fixed in the cross section. By assumption 3 the input

Thermal radiation Thermal radiation

RARRRRRRRY RERRRRRERE

S ”

¥y

(a) Before rotation. (b) After rotation Y.

Figure 11.- Coordinate systems for thermal analysis.

heat flux rate due to solar radiation is given by the expression

y(s) = Jgag0(s)cos %— (A20)
where
Jg = thermal radiation constant
ag = absorptivity
and
0(s) =1 for cos %—3_0
=0 for cos %—< 0
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The variation of vy(s) with s/r is
shown in figure 12. It follows from
equation (A20) that +vy(s) is an even
function of s/r. Therefore, since
oeTo“ is a constant, the left hand side
of equation (Al9) is also an even func-
tion of s/r. Since the left hand side
of equation (Al9) is a Fourier series
with argument s/r, it follows that equa-
Figure 12.- Circumferential distribution of input tion (Alg) can be satisfied if and only
heat flux rate. if qzn(t') = 0 for all n.

- -7/2 [¢] T/2 r
s/r

It is shown in reference 1 (after sign adjustments to account for the
adopted axis system) that the thermally induced bending moments about the
y" and z'' axes are given by the expressions

M. (') = e Eh ./0'2"r T(s,t')z"(s)ds (A21)
M, (t') = -ecEh j(;”r T(s,t')y"(s)ds (A22)
where
e coefficient of thermal expansion
E Young's modulus
y"(s)

21 (s) y'" and z'" coordinates of a point s on the perimeter of the boom

It follows from figure 11 that
y'"(s) = -r COS<% (A23)
z"(s) = -r sin-% (A24)

Substituting equation (Al8) into equations (A21) and (A22) (noting that
q,,(t") = 0 for all n) and performing the integrations indicated gives the

following expressions

|
o

Myu(t') = (A25)

M, (t")

eCEhnrqul(t') (A26)
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However, it follows from equation (Al9) that [dqll(t')/dt'] + Alqll(t') is
equal to the coefficient of cos(s/r) in the Fourier expansion of
v(s) - oeTO”/hpc. Thus,

+hap, (81 = 5 (A27)

Equations (A26) and (A27) may now be combined to give the following expression
for MZ"(t') in terms of the material properties. Thus,

dMZn(t') Jeoce ETI'I‘2

- 1y 2 S ST
dt! + Alevv(t ) ch (A28)

Equations (A25) and (A28) show that in the steady state,

Myn (oo) = 0
JSaSeCETrr2 (A29)

M, (=) =

z" 2pchy

CHANGE OF BENDING MOMENTS DUE TO SMALL ROTATION

Suppose, now, that the boom,whose cross section is shown in figure 11, has
reached its steady-state temperature distribution. The bending moments acting
on the boom are given by equation (A29). Suppose, further, that the cross
section is instantaneously rotated through a small angle ¢. It is required
to know the equations defining the subsequent change in the thermal bending
moments.

The equation governing the perturbation in temperature caused by the
small rotation differs from equation (A4) only in that the right hand side is
replaced by -Ay(s)/Kh where Ay(s) is the change of heat flux rate. It should
be noted here that t is the time measured from the instant of rotation
through the angle . The equation corresponding to equation (Al9) is,
therefore

—~ {[daq. . (t) dAq, (t)
n ns m ._ns| _ Ay(s)
:E : [}"’?ﬁ?“'* AnAqm(t):]COS T {“‘3{"*“* Anbdy, (B)sin == = —go00= (A30)

The instantaneous change of heat flux rate is given by (see eq. (A20))

Ay(s) = Jsas[el(s)cos (%—+ w) - 05(s)cos %] (A31)
where

Ol(s) 1 cos(%-+ w) >0

1}
]

cos(% + w) <0
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0, (s)
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o

if o is assumed to be sufficiently small that only terms linear in ¢ need
be retained, equation (A31l) becomes

Ay(s) = -Jg050(s)y sin %- (A32)

L Ayls) The variation of Ay(s) with s/r is
shown in figure 13. Clearly, Ay(s) is
Jyagy an odd function of s/r; therefore, equa-

| tion (A30) shows that Aqln(t) =0 for
5 i [ all n.

Proceeding as for equations (A25)
and (A26) gives corresponding expres-

Figure 13.- Change of circumferential distribution sions for the changes in the thermal

of input heat flux rate due to twist. bending moments; thus,
AMy”(t) = -e.Ehmr?aq,, (1) (A33)
AMZ”(t) =0

Equation (A30) shows that the expression [qu21(t)/dt] + AlAqZI(t) is equal
to the coefficient of sin(s/r) in the Fourier expansion of Ay(s)/hpc. Thus,

daq, . (t) Jea P
21 _ s%s
—ar Y Map () = - e (A34)

Equations (A33) and (A34) may now be combined to give the following expressions
for AMy”(t)

dam_,, (t) Jedce Enr2y
y'" _ Ys%s%c
dt + )‘IAM},H(t) = 20C (A35)
Equation (A35) may now be combined with equation (A29) to yield
dAMyn(t)
—dt——— + )\lAMy"(t) = }\]_MZ”(‘”)KP (A36)
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The bending moment AM , (t) may now be resolved about a set of axes y' and z'

(see fig. 11(b)) which are fixed relative to the direction of the incident
radiation. The component AMy,(t) about the y' axis is given by

AM ,,(t)cos ¢ = AM_,(t) while the component AMZ,(t) about the z' axis is
given by AMy”(t)sin ¥ = 0 (since by eq. (A36) AMy,(t) is the same order as

y). The overall conclusion, therefore, is that following an instantaneous
rotation ¢, the thermal bending moments acting on the cross section consist
of

(a) A moment MZ”(w) whose direction rotates with the cross section (body

fixed moment) and whose magnitude is constant and given by equation (A29)

(b) A moment AM,,, (t) whose direction is along the rays of the incident
radiation and whose magnitude is given by

da, , ()

T * MO (E) = MM, (=)u(t) (A37)

where ¢ (t) is regarded as a function of time.
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APPENDIX B

DEFLECTION EQUATIONS FOR A CIRCULARLY BENT BOOM

OF CIRCULAR CROSS SECTION

Consider a boom whose locus of flexural centers, in the unloaded condi-
tion, forms the arc of a circle of radius R. Furthermore, let the boom be
attached rigidly at one end to form a cantilever. It is assumed from the out-
set that the length of the boom L 1is small compared with the radius of
curvature R. The situation is shown in figure 14 which also shows the
coordinate systems adopted. The unit vectors t(x), A(x), and b(x) at a
typical point A are the tangent,
normal, and binormal, respectively, to
the locus of flexural centers. The
coordinates of point A relative to the
T(0), m(0), b(0) axes are X5, Yo Zg
while the deflection of point A rela-
tive to the mn(x), b(x) axes are denoted
by y(x) and z(x). The angle of twist
about Tt(x) is denoted by ¢(x).

D Q The problem is to determine the tip
L) E1(W) deflections y(L) and z(L) and the twist
Figure 14.- Coordinate system for deflection ¥ (L) due to the simultaneous action of
analysis. forces F, and F, acting along mn(L)

and b(L), a couple T acting along
t(L) and an arbitrary distribution of
bending moments AMp(x) and AMb(x)
acting along n(x) and b(x). The loads
on the boom are shown in figure 15. The
assumption is now made that the boom
deflections are sufficiently small that
the principal of superposition holds and
that, therefore, the bending moments and
torques remain constant and equal to
their values calculated as if the boom
were undeflected. It follows from fig-
L/R L Qs ure 15 that the total bending moments
x/R Fy Mp(x) and Mp(x) along T(x) and b(x),
respectively, at point A, are

M,(x) = -F,BC+T sin (L}‘zx) + AMp (x)

Mp(x) = pyﬁ + AMp (x)

Figure 15.- Loads acting on the boom. while the torque Mt (x) along f(x) is

given by
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M (x) = F,AC + T cos L & X

The distances BC, AD, and AC are given by the following expressions

L - x

BC = AD = R sin R

AC

L - x
R(l - COS R )

It is assumed at this point that the order of magnitude of the ratio of the
couple T to either force F, or Fy, never exceeds L?/R. Expanding the
above expressions into powers of (L'- x)/R and neglecting all above the third
power in the moments due to F, and F, and the first power in moments due to
T (in agreement with the above assumption) yields the following expressions
for Mp(x), Mp(x), and M¢(x)

_ 3
Mp(x) = -Fg [(L - x) - (Lhmﬂi:l + % (L - x) + AMj(x) (B1)
_ 3
M, (x) = Fy [(L - x) - (L_&%] + AMp (X) (B2)
_ (L - x)?
Mt(X) = FX T + T (BS)

It is convenient to start with the calculation of y(x). The twist angle
of a bent boom can be regarded as the sum of two components, one representing
the contribution due to twisting torque, the other the contribution due to

bending. Thus,

y(x) = ‘PT(X) + wB(X) (B4)

The relationship between angle of twist and applied torque is given by the
differential equation (ref. 6)

4%y (x) dy..(x)

-'C]_ ———d_>_(3— + C ——dx— = Mt(X) (BS)

The appropriate solution of equation (B5) must satisfy the following end
conditions

WT(X) x=0 0 (B6)
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along with
dip. (x)
—ax =0 if Tip Warping is Restrained (TWR)
x=L
or
A2y, (x)
Iz =0 if Tip Warping is Unrestrained (TWU)
X
x=L

The appropriate solution of equation (B5) is given by

X X
b () =f {s sinh (kX) - E}—k—f M, (R)sinh[k(X - X)]d&}dxX
0 0

where
_/c
k — a
1 L .
B = f Mt (X)sinh[k(L - X)]dx TWR
C,k sinh(kL) J, e [ )] (THR)
orTr
1 L
g = Jﬂ M¢ (X)cosh[k(L - X)]dx TWU
Cik cosh(kL) 0 £ () [k )] ( )

Substituting equation (B3) into equations (B10), (B11l), and (B12) and
performing the integrations gives the following results

i

Z

u@u)=gﬁ7G3+um;-m+éz+ﬂamﬂ+z]

k2 k3 sinh(kL)

{cosh[k(L-x)] - cosh(kL)}

tanh(%;)

cosh (kx) - cosh[k(L - x}]

6[1 - cosh(kx)] T
* ol Bl K sinh (kL) K

k3 sinh (kL)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(TWR)

(B13)
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or

_ Py 3 6x  3[(kL)2+2] , . .
wT(x) = €§6-<x + SLx(L-x)-+E5ub£§—zg;£z££5-{51nh[k(L-x)] -51nh(kL)}>

N %.{x+-5i;h£§§ﬁgk§%]- ta“i(kL) (TWU) (B14)
When x =1L
3
bo(L) = FZL6§é(kL) . TLfé(kL) (B15)
where
A
_ 6 3[(kL)? + 4] KL\)
fr(kL) = 1+ 5037 T T tanh(??)
( TWR
£,(kL) = 1 - f%—tanh (%%) |
or > (B16)
_ o, 6 3[(x1)% + 2] )
£1(kL) = 1 L L tanh (kL)
r TWU
£, (kL) = 1 - %f tanh (kL) J

Graphs of f3(kL) and f, (kL) are given in figure 3.

The twist due to bending yg(x) may be obtained from the strain energy
due to bending by application of Castigliano's theorem (ref. 7). It is first
necessary to introduce, in addition to the loads indicated in figure 15, a
dummy torque T¢ acting at the point x and along the tangent to the boom
axis. The bending moment at the point X about the n(X) axis then becomes

">

Mp'(X) = Mp(x) + T, sin (X & X) X >

(B17)

">

Mp, (%) X <

while the bending moment about the b(X) axis remains unchanged. The strain
energy in bending is given by the expression

L 1($Y)12 £y12
Ug = JE [[M“2é¥)] + [Mb§§%] dx (B18)
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and by the Castigliano theorem

aUp L Mp (x) 5 Mp' (R)] .=
Pp(x) = <5T;>'r . = _I; FT th dx (B19)
=

Differentiating equation (B17) with respect to T, and substituting for
3[My' (X)]/3T¢ in equation (B19) yields

1 X An . X - X A
bp(X) = 5 Mp (%)sin ( - ) g (820)
0

Substituting for Mp(X) from equation (Bl) into equation (B20) and performing
the integration indicated yields the following expression for ¢p(x)

-Fz [Lx2 X3 1 X ae . [X - X A
g (x) = ET§'<‘§‘ ) e ) MM (R)sin ( - ) g (B21)

where the simplifications permitted by the assumption made about the relative
magnitudes of the forces Fy and F; to the torque T have been made and
terms of order F,L®/R3 and higher have been neglected.

Combining equations (B15) and (B21) yields

L .
_ F,L3 [£3 (kL) 1 TL£, (kL) 1 -[ ae o {L=X\ 4
v = g [ 2C " EIJ° c T EI . AMp (X)sin | —x— ) dx

(B22)

The linear deflections y(L) and z(L) may also be regarded as the sum of
two components. In this case they are the contributions due to the bending
moment and to the angle of twist yp(x)

y (L)

z(L)

yg(L) + yp(L)

2p(L) + z7(L)

(B23)

1}

The contributions yB(L) and zg(L) may be calculated from the strain energy in
bending by an application of Castigliano's theorem. Thus the stain energy in
bending is given by equation (B18) where in this case the dummy torque T,
need not be included. The expressions for yB(L) and zg(L), by Castigliano,
are

) S BMp (x)
ye() = 35, = BT fo Mo () 5 (B24)
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U L My, (x)
zg (L) =ﬁ§=E1T J; My () —2——> dx (B25)

where use has been made of the facts that, from equations (B1l) and (B2),
M, (x)/3Fy, = M, (x)/3F, = 0. Substituting from equations (Bl) and (B2) into
equations” (B24) and (B25) yields

Fy (* L-x)37 R (T . (L-x
yB(L) =%'£ [(L - x) -(—GR%J dx+ETjo‘ AMb(x)51n( R )dx

L 3 2 L i 3
zp (L) =£—§_£ [(L-x)—%)—] dx-f{%fl (L - x) [(L-x)_____(L6R§3 ]dx

L
_ .EBI_fO M, (x) sin <L . X) dx : (B27)

where the quantity (L - x) - [(L - x)3/6R%], which is an approximation to
R sin[(L - x)/R], has been replaced by its true value in the two integral
expressions. Equations (B26) and (B27) simplify to

F L> R L . (L - x
yp(L) = 3%’_1 <L3 _5?> * BT j)‘ AMb(x)51n ( R ) dx (B28)

Fz L> rL3 R L-x
—— 3 - —— o — o — 3
zg(L) = 351 (L 2) IRET - BT i AMp, (x)sin ( R ) dx (B29)

It follows from the geometry of the boom in the deflected state that, to
the required accuracy, the deflection Yt (L), due to twist, is zero, while the
deflection =z (L) is given by the expre551on

L

Boom before element at x I1s twisted _ dier (%)
= ZT(L)=Rf [l—cos/LRx>:| g dx
Boom after element at x is twisted 0 \ X
K Tangent at x (and twist axis (see fig. 16) (B30)

for element dx)
) R@-ms(%§ﬂ Integrating equation (B30) by parts
gives
/<J ZT(L)=R|E-C05(L—;):]d¢:(:)dX
dyp(x)dx L
. L-x
d =
X zT(L) f I,UT(X)Sln ( = ) dx (B31)
0

Substituting for Yy(x) from equa-

Figure 16.- Geometry of the linear deflection due tions (BlS? an(_i (B16? into equation (B31)
to twist. and approximating sin[(L - x)/R] by
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(L - x)/R yields

FzL f3 (kL) , TL3f) (kL)

zT(L) = T0RCC GRC (B32)
where
_ 40 20 5 2, kL' u )
fiy(kL) =1+ 3(kL)24-(kL)” TE l4[(kL) 2]tanh(‘2)-+(kL) coth (kL) TWR
or (
_ 40 20 5[(kL)2+2]?
fa(kL) =1+ 3(kL)2 + (kL)” (kL)5 tanh (kL) TWUJ
(B33)

Graphs of f3(kL) are given in figure 3.

It follows from equations (B28), (B29), and (B32) that

F 5 L

_y 3 _ L R . L-x

y (L) = 3ET <L 5R2>+—EIJ; AMb (x)sin ( R ) dx (B34)
L
_ L3 LS [f3(kL) 1 ] TL3 [fl(kL) 1 R . (L - x

2(L) = Foi3ET* o7 [ ac " 3ELJ(T 3R 2c " Er| T ET J Mn(¥sin{=x—) dx

5R o
(B35)
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APPENDIX C

ORDER OF MAGNITUDE OF ANGLE OF TWIST DUE TO

THERMAL BENDING MOMENTS

At any point x along the boom, the angle of twist due to thermal
bending moments is given by the expression [N(x,t)/RRg]sin a, where

X ~
N(x,t) = Rf n(%,t)sin (" - X) dsx (C1)
0

These two expressions follow from equations (12)and (13) with L replaced by
x. The quantity n(X,t) is given by equation (6), which has the general
solution

-A(t-1)

n(x,t) = e “tn(x,0) + a fot e (X, 1)dr (€2)

Since, by definition, the boom is undisturbed at t = 0 it follows that
n(x,0) = 0. Also ¥(X,t) is continuous in 7 and e *{(t-T) is positive and
integrable over the region 0 < 1t < t. Therefore the first integral theorem
of mean value may be applied to equation (C2) giving

t
n(Et) = A, f e Mt g (c3)
0
where 0 < 7T < t. Therefore
(k1) = v &1 - o) (c4)

Since n(X,t) is continuous and (x - X) is positive and integrable over
the interval 0 < X < X, the first integral of mean value may be applied to
equation (Cl) giving

X -
N(x,t) = Rn(x,t) f sin (X };\ X) dx
0
where 0 < X < x. Therefore,

N(x,t) = Rn(i‘,t)(l - cos %) (€5)
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It follows from equations (C4) and (C5) that
N(x,t) = R¢(§;?§(l - cos-%)(l - e—At)
or
N(x,t) < Ry(x,7)(1 - cos 5) (t > 0) (C6)

R

If it is assumed that U(x,7) > ¥(X,7), inequality (C6) can be expressed in
the form

N(x,t) _. —. %2 sin a
—ﬁig—— sin a < ¥(x,T) 2RR, (t > 0) (C7)

where the factor [1 - cos{(x/R)] has been replaced by its approximate value
x2/2R?, Inequality (C7) indicates that over any interval of time starting at
zero the maximum angle of twist due to thermal bending moments alone is less
than the maximum total angle of twist multiplied by the factor (x2/2RRS)sin o.
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APPENDIX D

EVALUATION OF THE REAL PART OF THE ROOT OF THE
STABILITY POLYNOMIAL CORRESPONDING TO

THE MOST RAPID DIVERGENCE

i}
o

<=

|
e
=
wn

The stability polynomial for the special case of Iy
(eq. (51))

|
e

(01)

3 2
g¥* Cz 2
T-Xx " (1 -x A*)S* + (1 + 20%gy)s* « =

where the variables are defined by equations (47) to (50). 1In this appendix
the real part of the root of equation (D1) corresponding to the most rapid
divergence is sought under conditions of (a) varying A* at a fixed X, and
(b) varying X at a fixed A*.

It follows from the stability criteria for a cubic given in reference 5
that the unstable mode, if it exists, must be oscillatory. It is therefore
assumed that, in the region of interest, equation (D1) has one real root and a
pair of conjugate imaginary roots. Thus the characteristic polynomial must
have the following representation

(S* + a*)(s*z - ZP*S* + P*Z + q*Z) =0 (DZ)

where p* 1is the real part of the most rapid divergence and a* and q* are
both real quantities. Equation (D2) may be expanded to give

s*7 + s*2(2p* + a*) + s(p*” + q*? - 2prar) + a*(p*’ + q*7) = 0 (D3)

Equating coefficients of equations (D1) and (D3)

-2p* + a* = 2¢. + A*(1 - X) (D4)

*2 *2‘ k% *
p*" + q*" - 2p*a* = (1 - X)(1 + 2x*g,) (D5)
a*(p*> + q*%) = A% (1 - X) (6)

VARYING A*, FIXED X

At a stationary value of p* with respect to A* it is necessary that
op*/3x* = 0. The result of differentiating equations (D4), (D5), and (D6)
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with respect to A* is

2q* 299 _ 2p* da” _ 2z,(1 - X)

Ja* 2 2 9g*
3%;.(p* + q* ) + 2a*q* 5%; = (1 -X)

Equations (D7), (D8), and (D9) hold for nontrivial values of
q*(9q*/9x*) if and only if

1 0 -(1-X)
-2p* 2 -2z, (1-X)] =0
p*? + q*? 2a* -(1-X)

If x # 1, equation (D10) simplifies to

2

2
p*" + q*" + 2a¥*p* + 2a*cZ =1

(b7)

(D8)

(D9)

da*/3x* and

(b10)

(D11)

It also follows from equations (D4) and (D6), after eliminating X*(1 - X),

that

a*(p*2 + q*z) = _ZP* + a* - 2(:2

%2

and from equations (D11) and (D12) by eliminating p*2 +q that

Since p* and q*
be positive for

are real by definition, equation (D6) shows that
X < 1. Therefore

a* =1

Equations (D5), (D6), and (D14) may be combined to eliminate
yielding

p*z + q*2 - 2p* = Zt;z(p*2 + q*z) +1-X

(D12)

(D13)
a* must

(D14)
AT,

(D15)

Eliminating p*2 + q*2 between equations (D11) and (D15) gives the following

expression for p*

p*=_X__C
4(1 - ¢z) z

(D16)
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Substituting for p* from equation (D16) into equation (D4) produces the
following equation for A*

R s LR cxxd @17

The imaginary part of the complex root may be obtained from equation (D11);
thus,

2
q*? =1 - p* - 2(p* + z,) (D18}
VARYING X, FIXED \*
At a stationary value of p* with respect to X it is necessary that

dp*/38X = 0. The result of differentiating equations (D4), (D5), and (D6)
with respect to X is

*
g; = % (D19)
5q* da*
2q* 53~ - 2p* 52— = -(1 + 207z (D20)
da* . 2 . .2 3q* _
ax~ (P* + %) + 2a¥q* 3— = -A* (D21)

Equations (D19), (D20), and (D21) hold for nontrivial values of 5a*/d8X and
q*(3g*/3X) if and only if

1 0 A*
-2p* 2 1+2xz, | =0 (D22)
P*2 + q*z za* )\*

Equation (D22) simplifies to the following expression

P*2 + q*2 + 2p*a* = -a* (1 + 2x*ggz) + A*

S (D23)

It follows from equations (D5) and (D6) by eliminating (1 - X) that
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(p*% + q*2)[A* - a*(1 + 2x*z,)] - 2p*a*A* = 0 (D24)

. . 2 2
Equations (D12), (D23), and (D24) are linear in (p*~ + q* ) and 2p*. The
corresponding eliminant is

a* 1 -a* + 2,
* * %
1 a* a (1*'2;*CZ) Al I (D25)
A* - a*(l+ 2)*g,) -a¥*)\* 0
which simplifies to
(-a* + A*)2 = a*?((*?_ 2x%g ) (D26)

It follows from equation (D26) that this solution can hold only if

A2 2akg, 2 0

or

[ 5.%;- (D27)

The appropriate solution of equation (D26) is

—a* + A% = a*ax2 - 2a*g,

or

a* = AT (D28)

/[ 2
1 + VA*" - ZA*CZ

Eliminating p*2 + q*2 between equations (D12) and (D24) and substituting for
a* from equation (D28) yields the following expression for p*

)\*

p* = = -z,
2(1 + 2/a%% - 2a%g, - 2h%gy)

Equation (D4) then provides the value of X corresponding to the fastest
divergence, thus,

(D29)

Ax2 - g, - 2A*C 4

X=1 - .
(1 + A2 - 2a%g,) (1 + 2/4%2 - 2a%g, - 2a%g,)

(D30)
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Since X <1 it follows from equation (D30) that
AE2 _ onkp
A*E - 20*g, - 20*g, > 0

or

* -
vl + 4) 27 1 (D31)

tz < In*

Since (vV1 + 4r*? 1)/4x* < A*/2 it follows that inequality (D31) is a more
stringent limitation on permissible value of ¢, than is inequality (D27).

The imaginary part of the complex root may be obtained from equation (D12);
thus,

2
q*? = - o= P* v 2z) + 1 - p*? (D32)
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APPENDIX E
EVALUATION OF THE MAXIMUM VALUE OF mdm*

For any value of X and A* the value of mdm* given in figure 9
satisfies equation (92) with my* replaced by mdm*. Thus,

K*ax*x

2 2 * _ ~ %
o - K mgpe o+ A [mg - (1 - mg *)XT)

—K*A*[mdm*l*z(l-mdm*)(l— X)+mg * - (1 - mg *IX] + (1 - mg *)A*2X = 0 (E1)

Furthermore the computer study which resulted in figure 9 shows that equa-
tion (El1) has one real negative root and a pair of equal positive roots.
Therefore equation (E1) may be represented in the form

(«* + a)(x* - b)2 =0 (E2)

or

«*3 4+ «*%(a - 2b) + k*(b2 - 2ab) + ab2 = 0 (E3)

Equating coefficients of equations (El) and (E3) produces

a-2b= -{mdm* + A*z[mdm* - 1 - mdm*)x]} 1X%Y§ (E4)
b2 - 2ab = -[mg_*(1-mg #) (1~ X)A*" +mg_* - (1-mg *)X] 3;§33 (ES)
ab? = (1 - mg *) (1 - X)A* (E6)

A necessary condition for mdm* to be a maximum with respect to variations in
A*  is (amdm*/ax*) = 0. Differentiating equations (E4), (E5), and (E6) with
respect to A* and using this condition gives the following equations

Ja 25b 1 -X 2
PO O N {mg* - A [mg * - (1 - mg *IX]} (E7)
ob b %a 1 -X

(b - a) EA—*— —-—aF = - X mdm*(l - mdm*) (1 - X))\* (ES)
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? 3b
b2 2+ Zab 5y = (1 - mg *)(1 - X (E9)

Eliminating 23da/dA* and 3b/3r* gives

1-X
A*2X

{mdm* - }\*z[mdm* - - mdm*)X] }b2

2
. 2 LL%;Q_;mdm*(l_nHm*)A*b- (1-mg *)(1-X) =0  (E10)

It is convenient at this stage to introduce a variable & defined by

Equations (E4), (E5), (E6), and (E10) can then be rewritten as

%2
a - 2b= -E 3-{;1——-+ (1 - mg *)(1 - X)r* (E11)
b2 - 2ab = -£[A*2(1 - mg *)(L - X) + 1] + (1 - mg (A - X) (E12)
ab? = (1 - mg *) (1 - X)a* (E13)

El;lfw(l-m ﬂ(l-mk%bz—Zﬁ*%(l- A-X)
A* dp "dn )

+(1-mg *)(1-X)A* = 0 (E14)

Substituting ab? for (1 - mdm*)(l - X)x* (eq. (E13)) in equations (E1l1),
(E12), and (E14) gives

2
1+ A%
a-2b= -£ —-§;——_-+ ab? (E15)
2
b2 - 2ab = -E(r*ab? + 1) + 22 (E16)
l-)x*z 2
£ —=* abc - 2EA*ab + a = 0 (E17)

Substituting & from equation (E15) into equations (E16) and (E17) gives,
after some simplification,
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A*3(a2b - 2ab2 - a2b3 + 2a- b)b + A*%(a - 2b) + A*(2ab - b2) +ab2 = 0

A*2(a2b - 2ab2- a%b3+a-b) + (b+ab2) = 0

(E18)

(E19)

If a solution exists then equations (E18) and (E19) must have a common root.

The dialytic eliminant of equations (E18) and (E19) is

(a%b - 2ab? - a?b3+ 2a-b)b a-2b 2ab - b? ab?
0 (a%b - 2ab2 - a2b3 + 2a- b)b a-2b 2ab - b2
0 0 a?b - 2ab2-a%b3+a-b 0
0 a?b- 2ab2-a%bd3+a-b 0 b + ab?
a’b - 2ab? - a?p3+a-b 0 b + ab? 0

(E20)

It can be shown by direct substitution that equation (E20) is satisfied when

a=>b

Substituting a for b in equation (E18) then yields

o ] -

A* =

From equation (E15) substituting for
respectively, gives the following expression for ¢

Eliminating a from equations (E23) and (E13) then gives

k- * P
M T (mdm )max =X

from which it follows that

a=+vV1l-X

From equations (E22), (E24), and (E25)

(mg_*) =

1 - 1
m ‘max A *2

The graph of equation (E26) is shown by the dashed line in figure 9.

(E21)

(E22)

A* and b from equations (E22) and (E21),

(E23)

(E24)

(E25)

(E26)
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TABLE 1.

Parameter

Radius of cross section,
r, m

Wall thickness, h, m

Thermal conductivity, K,
J/sec m °K

Mass density, p, kg/m3

Specific heat, c, J/kg °K

Coefficient of thermal
expansion, ec, m/m °K

Stephan-Boltzmann constant,
o, J/sec m? °K"

Thermal radiation constant,
Jg, J/sec m?2

Emissivity, ¢

Absorptivity, og

Young's modulus, E, n/m?

Secgnd moment of area, I,
m

Torsional stiffness, C, nm

Warping stiffness, C;, nm"

Absolute ambient temperature,

2

Ty, °K
X, 1/sec (eq. (5))
Rg, m (eq. (8))

Mass per unit length, op,
kg/m

Polar inertia per unit
length, o;, kg m

Boom length, L, m

True tip mass, my, kg

Effective tip mass, my + Amg,
kg

True rotational inertia of
tip mass, Ly, kg m2

Effective rotational inertia
of tip, IW + AIw, kg m?2

L/C/Cy = kL

Boom A

0.565x10"°
3.44

EXAMPLE BOOMS

Boom B [ Boom C

Boom D

0.634x10"2

0.5x10~-

L

0.126x103
0.75x10%
4.18x102

0.187x10°%

[32]

.035
.13

O OR

OO

300
1.0
600

0.019

0.76x1076

18.3
1.61
1.694
1.605x10"3

1.611x10°3
3.44

.71x10-8

.385x103

.31x10%1

.41x10°10
.93x10"
.262x10"2

24.4
3.76

3.872
6x1073

6.008x10"3
4.60

3.63

3.804

6x10" 3

6.012x10" 3
7.11
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TABLE 1.

Tip condition
f1 (kL) (fig. 3)
f3(kL) (fig. 3)

A (eq. (27))
B (eq. (41))
D (eq. (29))

(1//10) (A/D) (eq. (33))

Radius of gyration of
equivalent tip mass,
Dw, m

vmp(A - B) and A*

X

p* (fig. 6) .

Time to double amplitude
(no damping), min

EXAMPLE BOOMS - Concluded

Unrestrained

0.49
0.29
.2691x10°3
.8883x102
8.9688x103
0.045

oo

0.00632
5.655

0.700
0.142

0.46

0.41

0.275
1.2232x103
8.4286x102
7.5044x103

0.0515

0.0308
25.383

0.689
0.042

6.98

Restrained|Restrained

Restrained
0.52 0.665
0.37 0.51
5.6802x103[6.2127x10%
4.7788x103|5.8777x10%
2.2561x10%|1.0725%10°
0.0796 0.184
0.0402 0.396
58.217 111.887
0.8413 0.946
0.048 0.075
14.02 17.20
NASA-Langley, 1970 —— 32 A-3284
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